Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 38(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29941490

RESUMO

Cancer cells often heavily depend on the ubiquitin-proteasome system (UPS) for their growth and survival. Irrespective of their strong dependence on the proteasome activity, cancer cells, except for multiple myeloma, are mostly resistant to proteasome inhibitors. A major cause of this resistance is the proteasome bounce-back response mediated by NRF1, a transcription factor that coordinately activates proteasome subunit genes. To identify new targets for efficient suppression of UPS, we explored, using immunoprecipitation and mass spectrometry, the possible existence of nuclear proteins that cooperate with NRF1 and identified O-linked N-acetylglucosamine transferase (OGT) and host cell factor C1 (HCF-1) as two proteins capable of forming a complex with NRF1. O-GlcNAcylation catalyzed by OGT was essential for NRF1 stabilization and consequent upregulation of proteasome subunit genes. Meta-analysis of breast and colorectal cancers revealed positive correlations in the relative protein abundance of OGT and proteasome subunits. OGT inhibition was effective at sensitizing cancer cells to a proteasome inhibitor both in culture cells and a xenograft mouse model. Since active O-GlcNAcylation is a feature of cancer metabolism, our study has clarified a novel linkage between cancer metabolism and UPS function and added a new regulatory axis to the regulation of the proteasome activity.


Assuntos
Fator 1 Relacionado a NF-E2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteassoma/farmacologia , Acetilglucosamina/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Glicosilação , Células HEK293 , Células HeLa , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Fator 1 Relacionado a NF-E2/química , Fator 1 Relacionado a NF-E2/genética , Neoplasias/genética , Fator 1 Nuclear Respiratório , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Contendo Repetições de beta-Transducina/química , Proteínas Contendo Repetições de beta-Transducina/metabolismo
2.
Free Radic Biol Med ; 110: 196-205, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28625484

RESUMO

The Nrf1 (Nuclear factor E2-related factor 1) transcription factor performs a critical role in regulating cellular homeostasis. Using a proteomic approach, we identified Host Cell Factor-1 (HCF1), a co-regulator of transcription, and O-GlcNAc transferase (OGT), the enzyme that mediates protein O-GlcNAcylation, as cellular partners of Nrf1a, an isoform of Nrf1. Nrf1a directly interacts with HCF1 through the HCF1 binding motif (HBM), while interaction with OGT is mediated through HCF1. Overexpression of HCF1 and OGT leads to increased Nrf1a protein stability. Addition of O-GlcNAc decreases ubiquitination and degradation of Nrf1a. Transcriptional activation by Nrf1a is increased by OGT overexpression and treatment with PUGNAc. Together, these data suggest that OGT can act as a regulator of Nrf1a.


Assuntos
Fator C1 de Célula Hospedeira/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Processamento de Proteína Pós-Traducional , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Expressão Gênica , Glicosilação , Células HEK293 , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/genética , Humanos , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/genética , Fator 1 Nuclear Respiratório/química , Fator 1 Nuclear Respiratório/genética , Oximas/farmacologia , Fenilcarbamatos/farmacologia , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ativação Transcricional/efeitos dos fármacos , Transfecção , Ubiquitinação
3.
Hum Mol Genet ; 26(15): 2838-2849, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449119

RESUMO

CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development.


Assuntos
Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Vitamina B 12/metabolismo , Animais , Sequência de Bases , Região Branquial/metabolismo , Diferenciação Celular , Criança , Anormalidades Craniofaciais/genética , Fibroblastos , Regulação da Expressão Gênica/genética , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Mutação , Cultura Primária de Células , Transcrição Gênica , Vitamina B 12/genética , Peixe-Zebra/genética
4.
J Am Chem Soc ; 139(9): 3332-3335, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28207246

RESUMO

O-Linked ß-N-acetylglucosamine transferase (OGT) is an essential human enzyme that glycosylates numerous nuclear and cytoplasmic proteins on serine and threonine. It also cleaves Host cell factor 1 (HCF-1) by a mechanism in which the first step involves glycosylation on glutamate. Replacing glutamate with aspartate in an HCF-1 proteolytic repeat was shown to prevent peptide backbone cleavage, but whether aspartate glycosylation occurred was not examined. We report here that OGT glycosylates aspartate much faster than it glycosylates glutamate in an otherwise identical model peptide substrate; moreover, once formed, the glycosyl aspartate reacts further to form a succinimide intermediate that hydrolyzes to produce the corresponding isoaspartyl peptide. Aspartate-to-isoaspartate isomerization in proteins occurs in cells but was previously thought to be exclusively non-enzymatic. Our findings suggest it may also be enzyme-catalyzed. In addition to OGT, enzymes that may catalyze aspartate to isoaspartate isomerization include PARPs, enzymes known to ribosylate aspartate residues in the process of poly(ADP-ribosyl)ation.


Assuntos
Ácido Aspártico/biossíntese , Fator C1 de Célula Hospedeira/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Ácido Aspártico/química , Biocatálise , Glicosilação , Fator C1 de Célula Hospedeira/química , Humanos , Conformação Molecular
5.
Nat Chem Biol ; 12(11): 899-901, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27618188

RESUMO

The essential human enzyme O-linked ß-N-acetylglucosamine transferase (OGT), known for modulating the functions of nuclear and cytoplasmic proteins through serine and threonine glycosylation, was unexpectedly implicated in the proteolytic maturation of the cell cycle regulator host cell factor-1 (HCF-1). Here we show that HCF-1 cleavage occurs via glycosylation of a glutamate side chain followed by on-enzyme formation of an internal pyroglutamate, which undergoes spontaneous backbone hydrolysis.


Assuntos
Amidas/química , Amidas/metabolismo , Biocatálise , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Humanos , Hidrólise
6.
Mol Cell Proteomics ; 15(11): 3405-3411, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27558639

RESUMO

Intracellular GlcNAcylation of Ser and Thr residues is a well-known and widely investigated post-translational modification. This post-translational modification has been shown to play a significant role in cell signaling and in many regulatory processes within cells. O-GlcNAc transferase is the enzyme responsible for glycosylating cytosolic and nuclear proteins with a single GlcNAc residue on Ser and Thr side-chains. Here we report that the same enzyme may also be responsible for S-GlcNAcylation, i.e. for linking the GlcNAc unit to the peptide by modifying a cysteine side-chain. We also report that O-GlcNAcase, the enzyme responsible for removal of O-GlcNAcylation does not appear to remove the S-linked sugar. Such Cys modifications have been detected and identified in mouse and rat samples. This work has established the occurrence of 14 modification sites assigned to 11 proteins unambiguously. We have also identified S-GlcNAcylation from human Host Cell Factor 1 isolated from HEK-cells. Although these site assignments are primarily based on electron-transfer dissociation mass spectra, we also report that S-linked GlcNAc is more stable under collisional activation than O-linked GlcNAc derivatives.


Assuntos
Acetilglucosamina/química , Cisteína/química , Glicopeptídeos/química , N-Acetilglucosaminiltransferases/metabolismo , Animais , Células HEK293 , Fator C1 de Célula Hospedeira/química , Humanos , Espectrometria de Massas , Camundongos , Processamento de Proteína Pós-Traducional , Ratos
7.
Annu Rev Biochem ; 85: 631-57, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27294441

RESUMO

O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding ß-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.


Assuntos
Células Eucarióticas/enzimologia , Fator C1 de Célula Hospedeira/química , N-Acetilglucosaminiltransferases/química , Processamento de Proteína Pós-Traducional , Acilação , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Divisão Celular , Sobrevivência Celular , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Células Eucarióticas/citologia , Glicosilação , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Mamíferos , Camundongos , Modelos Moleculares , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Especificidade da Espécie
8.
Hum Mol Genet ; 24(12): 3335-47, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25740848

RESUMO

Both gain- and loss-of-function mutations have recently implicated HCFC1 in neurodevelopmental disorders. Here, we extend our previous HCFC1 over-expression studies by employing short hairpin RNA to reduce the expression of Hcfc1 in embryonic neural cells. We show that in contrast to over-expression, loss of Hcfc1 favoured proliferation of neural progenitor cells at the expense of differentiation and promoted axonal growth of post-mitotic neurons. To further support the involvement of HCFC1 in neurological disorders, we report two novel HCFC1 missense variants found in individuals with intellectual disability (ID). One of these variants, together with three previously reported HCFC1 missense variants of unknown pathogenicity, were functionally assessed using multiple cell-based assays. We show that three out of the four variants tested result in a partial loss of HCFC1 function. While over-expression of the wild-type HCFC1 caused reduction in HEK293T cell proliferation and axonal growth of neurons, these effects were alleviated upon over-expression of three of the four HCFC1 variants tested. One of these partial loss-of-function variants disrupted a nuclear localization sequence and the resulting protein displayed reduced ability to localize to the cell nucleus. The other two variants displayed negative effects on the expression of the HCFC1 target gene MMACHC, which is responsible for the metabolism of cobalamin, suggesting that these individuals may also be susceptible to cobalamin deficiency. Together, our work identifies plausible cellular consequences of missense HCFC1 variants and identifies likely and relevant disease mechanisms that converge on embryonic stages of brain development.


Assuntos
Encéfalo/citologia , Fator C1 de Célula Hospedeira/genética , Mutação , Células-Tronco Neurais/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Encéfalo/embriologia , Proteínas de Transporte/genética , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Feminino , Expressão Gênica , Células HEK293 , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Células-Tronco Neurais/citologia , Oxirredutases , Linhagem , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução Genética
9.
Science ; 342(6163): 1235-9, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24311690

RESUMO

Host cell factor-1 (HCF-1), a transcriptional co-regulator of human cell-cycle progression, undergoes proteolytic maturation in which any of six repeated sequences is cleaved by the nutrient-responsive glycosyltransferase, O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). We report that the tetratricopeptide-repeat domain of O-GlcNAc transferase binds the carboxyl-terminal portion of an HCF-1 proteolytic repeat such that the cleavage region lies in the glycosyltransferase active site above uridine diphosphate-GlcNAc. The conformation is similar to that of a glycosylation-competent peptide substrate. Cleavage occurs between cysteine and glutamate residues and results in a pyroglutamate product. Conversion of the cleavage site glutamate into serine converts an HCF-1 proteolytic repeat into a glycosylation substrate. Thus, protein glycosylation and HCF-1 cleavage occur in the same active site.


Assuntos
Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/metabolismo , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Glicosilação , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Proteólise , Ácido Pirrolidonocarboxílico/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Uridina Difosfato N-Acetilglicosamina/química , Uridina Difosfato N-Acetilglicosamina/metabolismo
10.
Am J Hum Genet ; 93(3): 506-14, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24011988

RESUMO

Derivatives of vitamin B12 (cobalamin) are essential cofactors for enzymes required in intermediary metabolism. Defects in cobalamin metabolism lead to disorders characterized by the accumulation of methylmalonic acid and/or homocysteine in blood and urine. The most common inborn error of cobalamin metabolism, combined methylmalonic acidemia and hyperhomocysteinemia, cblC type, is caused by mutations in MMACHC. However, several individuals with presumed cblC based on cellular and biochemical analysis do not have mutations in MMACHC. We used exome sequencing to identify the genetic basis of an X-linked form of combined methylmalonic acidemia and hyperhomocysteinemia, designated cblX. A missense mutation in a global transcriptional coregulator, HCFC1, was identified in the index case. Additional male subjects were ascertained through two international diagnostic laboratories, and 13/17 had one of five distinct missense mutations affecting three highly conserved amino acids within the HCFC1 kelch domain. A common phenotype of severe neurological symptoms including intractable epilepsy and profound neurocognitive impairment, along with variable biochemical manifestations, was observed in all affected subjects compared to individuals with early-onset cblC. The severe reduction in MMACHC mRNA and protein within subject fibroblast lines suggested a role for HCFC1 in transcriptional regulation of MMACHC, which was further supported by the identification of consensus HCFC1 binding sites in MMACHC. Furthermore, siRNA-mediated knockdown of HCFC1 expression resulted in the coordinate downregulation of MMACHC mRNA. This X-linked disorder demonstrates a distinct disease mechanism by which transcriptional dysregulation leads to an inborn error of metabolism with a complex clinical phenotype.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Fator C1 de Célula Hospedeira/genética , Hiper-Homocisteinemia/genética , Mutação/genética , Vitamina B 12/genética , Idade de Início , Sequência de Aminoácidos , Sítios de Ligação , Análise Mutacional de DNA , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Células HEK293 , Fator C1 de Célula Hospedeira/química , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/metabolismo
11.
Proteomics ; 13(6): 982-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23335398

RESUMO

The development of electron-based, unimolecular dissociation MS, i.e. electron capture and electron transfer dissociation (ECD and ETD, respectively), has greatly increased the speed and reliability of labile PTM site assignment. The field of intracellular O-GlcNAc (O-linked N-acetylglucosamine) signaling has especially advanced with the advent of ETD MS. Only within the last five years have proteomic-scale experiments utilizing ETD allowed the assignment of hundreds of O-GlcNAc sites within cells and subcellular structures. Our ability to identify and unambiguously assign the site of O-GlcNAc modifications using ETD is rapidly increasing our understanding of this regulatory glycosylation and its potential interaction with other PTMs. Here, we discuss the advantages of using ETD, complimented with collisional-activation MS, in a study of the extensively O-GlcNAcylated protein Host Cell Factor C1 (HCF-1). HCF-1 is a transcriptional coregulator that forms a stable complex with O-GlcNAc transferase and controls cell cycle progression. ETD, along with higher energy collisional dissociation (HCD) MS, was employed to assign the PTMs of the HCF-1 protein isolated from HEK293T cells. These include 19 sites of O-GlcNAcylation, two sites of phosphorylation, and two sites bearing dimethylarginine, and showcase the residue-specific, PTM complexity of this regulator of cell proliferation.


Assuntos
Fator C1 de Célula Hospedeira/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Glicopeptídeos/química , Glicopeptídeos/isolamento & purificação , Glicosilação , Células HEK293 , Fator C1 de Célula Hospedeira/isolamento & purificação , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
12.
Proc Natl Acad Sci U S A ; 109(43): 17430-5, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045687

RESUMO

Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.


Assuntos
Regulação da Expressão Gênica , Fator C1 de Célula Hospedeira/fisiologia , Transcrição Gênica , Sequência de Aminoácidos , Cristalografia por Raios X , Fator C1 de Célula Hospedeira/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Sinais de Localização Nuclear , Sequências de Repetição em Tandem
13.
Transcription ; 3(4): 187-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22771988

RESUMO

Host cell factor-1(HCF-1) was first discovered as a cellular cofactor in the VP16-induced complex, a multi-protein DNA complex that forms on immediate early gene promoters of herpes simplex virus (HSV) to activate viral gene transcription. Subsequent research has revealed HCF-1 to be an abundant chromatin-associated protein that regulates various stages of the cell cycle. Recent reports show that HCF-1 interacts with diverse E2F proteins to induce cell-cycle-specific transcription. HCF-1 can act as a scaffold to a variety of histone-modifying proteins and these HCF-1-E2F-containing multi-protein complexes can bring about context-dependent activation or repression of transcription. In this review we examine the diversity of HCF-E2F interactions and the variety of multi-protein complexes it occurs in, to influence the local chromatin landscape at the E2F-promoters.


Assuntos
Ciclo Celular/fisiologia , Fator C1 de Célula Hospedeira/metabolismo , Transcrição Gênica/fisiologia , Animais , Sítios de Ligação , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Fator C1 de Célula Hospedeira/química , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/metabolismo
14.
Cell ; 144(3): 376-88, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21295698

RESUMO

The human epigenetic cell-cycle regulator HCF-1 undergoes an unusual proteolytic maturation process resulting in stably associated HCF-1(N) and HCF-1(C) subunits that regulate different aspects of the cell cycle. Proteolysis occurs at six centrally located HCF-1(PRO)-repeat sequences and is important for activation of HCF-1(C)-subunit functions in M phase progression. We show here that the HCF-1(PRO) repeat is recognized by O-linked ß-N-acetylglucosamine transferase (OGT), which both O-GlcNAcylates the HCF-1(N) subunit and directly cleaves the HCF-1(PRO) repeat. Replacement of the HCF-1(PRO) repeats by a heterologous proteolytic cleavage signal promotes HCF-1 proteolysis but fails to activate HCF-1(C)-subunit M phase functions. These results reveal an unexpected role of OGT in HCF-1 proteolytic maturation and an unforeseen nexus between OGT-directed O-GlcNAcylation and proteolytic maturation in HCF-1 cell-cycle regulation.


Assuntos
Fator C1 de Célula Hospedeira/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Ciclo Celular , Glicosilação , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/genética , Humanos , Dados de Sequência Molecular , Mutação , Subunidades Proteicas/metabolismo , Alinhamento de Sequência
15.
Mol Cell Biol ; 30(21): 5071-85, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20805357

RESUMO

The candidate tumor suppressor BAP1 is a deubiquitinating enzyme (DUB) involved in the regulation of cell proliferation, although the molecular mechanisms governing its function remain poorly defined. BAP1 was recently shown to interact with and deubiquitinate the transcriptional regulator host cell factor 1 (HCF-1). Here we show that BAP1 assembles multiprotein complexes containing numerous transcription factors and cofactors, including HCF-1 and the transcription factor Yin Yang 1 (YY1). Through its coiled-coil motif, BAP1 directly interacts with the zinc fingers of YY1. Moreover, HCF-1 interacts with the middle region of YY1 encompassing the glycine-lysine-rich domain and is essential for the formation of a ternary complex with YY1 and BAP1 in vivo. BAP1 activates transcription in an enzymatic-activity-dependent manner and regulates the expression of a variety of genes involved in numerous cellular processes. We further show that BAP1 and HCF-1 are recruited by YY1 to the promoter of the cox7c gene, which encodes a mitochondrial protein used here as a model of BAP1-activated gene expression. Our findings (i) establish a direct link between BAP1 and the transcriptional control of genes regulating cell growth and proliferation and (ii) shed light on a novel mechanism of transcription regulation involving ubiquitin signaling.


Assuntos
Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo , Fator de Transcrição YY1/química , Fator de Transcrição YY1/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Bovinos , Linhagem Celular , Proliferação de Células , DNA/genética , DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Células HeLa , Fator C1 de Célula Hospedeira/antagonistas & inibidores , Fator C1 de Célula Hospedeira/genética , Humanos , Técnicas In Vitro , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Complexos Multiproteicos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Interferência de RNA , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais , Ativação Transcricional , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Ubiquitinação , Fator de Transcrição YY1/antagonistas & inibidores , Fator de Transcrição YY1/genética
16.
J Biol Chem ; 285(7): 4268-72, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20018852

RESUMO

Human MOF (MYST1), a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs), is the human ortholog of the Drosophila males absent on the first (MOF) protein. MOF is the catalytic subunit of the male-specific lethal (MSL) HAT complex, which plays a key role in dosage compensation in the fly and is responsible for a large fraction of histone H4 lysine 16 (H4K16) acetylation in vivo. MOF was recently reported to be a component of a second HAT complex, designated the non-specific lethal (NSL) complex (Mendjan, S., Taipale, M., Kind, J., Holz, H., Gebhardt, P., Schelder, M., Vermeulen, M., Buscaino, A., Duncan, K., Mueller, J., Wilm, M., Stunnenberg, H. G., Saumweber, H., and Akhtar, A. (2006) Mol. Cell 21, 811-823). Here we report an analysis of the subunit composition and substrate specificity of the NSL complex. Proteomic analyses of complexes purified through multiple candidate subunits reveal that NSL is composed of nine subunits. Two of its subunits, WD repeat domain 5 (WDR5) and host cell factor 1 (HCF1), are shared with members of the MLL/SET family of histone H3 lysine 4 (H3K4) methyltransferase complexes, and a third subunit, MCRS1, is shared with the human INO80 chromatin-remodeling complex. In addition, we show that assembly of the MOF HAT into MSL or NSL complexes controls its substrate specificity. Although MSL-associated MOF acetylates nucleosomal histone H4 almost exclusively on lysine 16, NSL-associated MOF exhibits a relaxed specificity and also acetylates nucleosomal histone H4 on lysines 5 and 8.


Assuntos
Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Acetilação , Linhagem Celular , Células HeLa , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lisina/metabolismo , Espectrometria de Massas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato
17.
EMBO J ; 28(20): 3185-95, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19763085

RESUMO

E2F1 is a key positive regulator of human cell proliferation and its activity is altered in essentially all human cancers. Deregulation of E2F1 leads to oncogenic DNA damage and anti-oncogenic apoptosis. The molecular mechanisms by which E2F1 mediates these two processes are poorly understood but are important for understanding cancer progression. During the G1-to-S phase transition, E2F1 associates through a short DHQY sequence with the cell-cycle regulator HCF-1 together with the mixed-lineage leukaemia (MLL) family of histone H3 lysine 4 (H3K4) methyltransferases. We show here that the DHQY HCF-1-binding sequence permits E2F1 to stimulate both DNA damage and apoptosis, and that HCF-1 and the MLL family of H3K4 methyltransferases have important functions in these processes. Thus, HCF-1 has a broader role in E2F1 function than appreciated earlier. Indeed, sequence changes in the E2F1 HCF-1-binding site can modulate both up and down the ability of E2F1 to induce apoptosis indicating that HCF-1 association with E2F1 is a regulator of E2F1-induced apoptosis.


Assuntos
Apoptose/fisiologia , Dano ao DNA/fisiologia , Fator de Transcrição E2F1/fisiologia , Fator C1 de Célula Hospedeira/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Sequência de Aminoácidos , Apoptose/genética , Sítios de Ligação , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Dano ao DNA/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Citometria de Fluxo , Imunofluorescência , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Fator C1 de Célula Hospedeira/química , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/fisiologia , Humanos , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/fisiologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...